
@giltayar

Four Pillars and a Base: The Nuts 
and Bolts of a Microservice 

Project
Gil Tayar (@giltayar)
March 2019

This presentation: http://bit.ly/microservice-nuts-bolts

1

http://bit.ly/microservice-nuts-bolts


@giltayar@giltayar

About Me ● My developer experience goes all the way 
back to the ‘80s.

● Am, was, and always will be a developer
● Testing the code I write is my passion
● Currently evangelist and architect @ 

Applitools
● We deliver Visual Testing tools: 

If you’re serious about testing, checkout 
Applitools Eyes

● Sometimes my arms bend back
● But the gum I like is coming back in style

@giltayar

2



@giltayar

Four Pillars and a Base

3



@giltayar

Firefox

rendering

worker

Hea

dles

s FF

Firefox

rendering

worker

Hea

dles

s FF

Chrome

rendering

worker

Headless 

Chrome

Chrome

rendering

worker

Headless 

Chrome

Rendering 

job

4

rendering-api

rendering job

(url, webhook, 

browser-info, 

auth token)

Chrome 

Rendering Job 

Queue
Chrome

rendering

worker

Headless 

Chrome

render-status?

(polling)

Firefox

rendering

worker

Hea

dles

s FF

Firefox 

Rendering Job 

Queue
Rendering 

job

render-status

T
h
e
 V

is
u
a
l G

rid

Applitools Eyes 

Server

This is the Visual Grid



@giltayar

Firefox

rendering

worker

Hea

dles

s FF

Firefox

rendering

worker

Hea

dles

s FF

Chrome

rendering

worker

Headless 

Chrome

Chrome

rendering

worker

Headless 

Chrome

Rendering 

job

5

rendering-api

rendering job

(url, webhook, 

browser-info, 

auth token)

Chrome 

Rendering Job 

Queue
Chrome

rendering

worker

Headless 

Chrome

render-status?

(polling)

Firefox

rendering

worker

Hea

dles

s FF

Firefox 

Rendering Job 

Queue
Rendering 

job

render-status

T
h
e
 V

is
u
a
l G

rid

Applitools Eyes 

Server



@giltayar

I want to talk about… 

How we built the Visual Grid

6



@giltayar

But first: why we built it the way we did
7



@giltayar

Dynamic Languages vs Static Languages

8



@giltayar@giltayar

And It’s War!

Between 

● Java, C#, C++, Haskell, Kotlin and, yes, 
TypeScript

and

● Python, Ruby, Clojure, and, yes,
JavaScript

9

http://archive.defense.gov/home/features/2010/0610_korea60ann/


@giltayar

Static Languages Lovers: Dynamic Languages are Scary!
● You can’t trust the code

○ because no type safety

● Difficult to comprehend
○ because no type documentation

10



@giltayar

Static Languages Lovers: Dynamic Languages are Scary!
● You can’t trust the code

○ because no type safety

● Difficult to comprehend
○ because no type documentation

11



@giltayar

12

Dynamic Typing is not a weakness to overcome,
but a strength to take advantage of

But… 



@giltayar

13

Dynamic Typing is not a weakness to overcome,
but a strength to take advantage of



@giltayar

Safety Nets

14



@giltayar

Dynamic Languages Force You To Be Better
❖ You can’t trust the code!

➢ Testing

❖ Difficult to comprehend!
➢ Loosely-coupled small packages

15



@giltayar

Dynamic Languages Drive Two Pillars
16

Testing
Loosely-coupled

small packages



@giltayar

The Other Two Pillars (which give structure to the first two)
17

Testing
Loosely-coupled

small packages
Monorepo

Uniform 

Packages



@giltayar

And these four pillars enable the base...

18



@giltayar

19
Testing

Loosely-coupled

small packages
Monorepo

Uniform 

Packages

Frictionless Development



@giltayar

20
Testing

Loosely-coupled

small packages
Monorepo

Uniform 

Packages

Frictionless Development



@giltayar

Monorepo Pillar

21



@giltayar

All Source Code is in One Git Repository

22



@giltayar

23



@giltayar

24



@giltayar

25



@giltayar

Why? Why One Repo?
● Remember many small packages?
● Remember frictionless development?

26



@giltayar

Demo: Creating a Package is Really Easy

27



@giltayar

Packages are...
● Written separately
● Tested separately
● Published Separately

28



@giltayar

Features spanning two packages
● Write, test, publish code in package B
● `npm update` in package A
● Write, test in package A

Or…

● Use `npm link`
● And then publish both packages

29



@giltayar

NPM is our bridge between packages
● We will never EVER use

`require('.../package-a')`.

● semver-major supports changes that upstream packages cannot use

30



@giltayar

Two-package development is not common

31



@giltayar

VSCode
Workspaces

32



@giltayar

Advantages of monorepos Disadvantages
Simple to move between one package and another

Simple to maintain many packages

Simple to split packages

Packages tend to be small (because easy to create)

“Common” packages are easy to develop and 
maintain

NPM link is bad

CI is a problem

33



@giltayar

Advantages
DisadvantagesSimple to move between one package and another

Simple to maintain many packages

Simple to split packages

Packages tend to be small (because easy to create)

“Common” packages are easy to develop and 
maintain

NPM link is bad

CI is a problem

34

Frictionless Development



@giltayar

35
Testing

Loosely-coupled

small packages
Monorepo

Uniform 

Packages

Frictionless Development



@giltayar

Uniform Packages

36



@giltayar

All happy families are alike; 
each unhappy family is unhappy in its own way

37



@giltayar

All happy families are alike; 
each unhappy family is unhappy in its own way

-- Tolstoy, “Anna Karenina”

38



@giltayar

All happy packages are alike; 
each unhappy package is unhappy in its own way

-- Gil Tayar, “Applitools”

39



@giltayar

All our packages are happy!
● They are uniform in the way we build, test, and publish them.

● They are the same in their folder structure
○ but that’s optional

40



@giltayar

Build Uniformity

41



@giltayar

(in our monorepo)

A package is source code that can generate artifacts,
which are used by other packages or in production

What is a Package?
42



@giltayar

Two Examples of Packages and their Artifacts
❖ Library package

➢ Artifact: an npm package in the repository

❖ Microservice package
➢ Artifact: a Docker image to be used in production
➢ Artifact: configuration values to be used in production
➢ Artifact: an npm package in the repository

43



@giltayar

A package in our monorepo is an npm package
❖ npm install

➢ Bring in the dependent artifacts, and any artifact needed to build this one

❖ npm update

➢ Update dependencies to latest (without breaking backward compatibility)

❖ npm run build

➢ Build the artifact (optional for JavaScript)

❖ npm test

➢ Test the artifact to ensure that it can be published

❖ npm publish

➢ Publish the artifact(s)

❖ npm run deploy

➢ Deploy the artifact to production (only for microservices)

Note: we can use postpublish/postinstall to do more non-npm stuff.

44



@giltayar

Example from a Library Package
"scripts": {

"build": "#", // Yay JavaScript!

"test": "npm run eslint && npm run test:mocha-parallel",

"test:mocha": "mocha 'test/unit/*.test.js'

'test/it/*.test.js' 'test/e2e/*.test.js'",

"test:mocha-parallel": "mocha-parallel-tests 'test/unit/*.test.js'

'test/it/*.test.js' 'test/e2e/*.test.js'",

"eslint": "eslint '**/*.js'"

},

45



@giltayar

Example from a Microservice Package
"scripts": {

"build": "npm run build:docker",

"build:docker": "docker build -t applitools/chrome-rendering-worker

--build-arg NPM_FILE=`cat ~/.npmrc` .",

"test": "npm run eslint && npm run test:mocha",

"postpublish": "npm run publish:docker",

"publish:docker": "docker tag applitools/chrome-rendering-worker

applitools/chrome-rendering-worker:${npm_package_version} &&

docker push applitools/chrome-rendering-worker:${npm_package_version} 

&&

docker push applitools/chrome-rendering-worker:latest",

"deploy": "kdeploy deploy chrome-rendering-worker ${npm_package_version}"

}

46



@giltayar

Advantages
DisadvantagesDevelopers can start developing (and 

deploying) all packages without 
understanding anything.

CI (when we have it) will be easier

Sometimes it’s like fitting a square into 
a circle.

47



@giltayar

Advantages
DisadvantagesDevelopers can start developing (and 

deploying) all packages without 
understanding anything.

CI (when we have it) will be easier

Sometimes it’s like fitting a square into 
a circle.

48

Frictionless Development



@giltayar

Source Code Uniformity

49



@giltayar

Folder Structure
50



@giltayar

Source Code Structure
51

src and scripts
● entrypoint has same name as 

package.
● All source is inside there.
● Whitelist the npm published files



@giltayar

Source Code Structure
52

Microservice src and script
● src exports a web app
● scripts runs the web app. This is 

what the Dockerfile runs.



@giltayar

Source Code Structure
53

Support files
● .vscode for easy debugging
● test folder each package
● Eslint and prettier



@giltayar

54
Testing

Loosely-coupled

small packages
Monorepo

Uniform 

Packages

Frictionless Development



@giltayar

Testing

55



@giltayar

Rule #1:
Never EVER EVER run your code locally

(except in a test)

56



@giltayar

… And You Don’t Have To Test
❖ Want to write your feature and immediately deploy it? 

➢ Sure!
➢

❖ Otherwise, write a test

57



@giltayar

Testing is the epitome of
Frictionless Development

58



@giltayar

Testing is the epitome of
Frictionless Development

59

a person or thing that is 

a perfect example of a 

particular quality or type



@giltayar

It is the main reason our velocity is high

60



@giltayar

It is one of the two reasons we don’t need
TypeScript

61



@giltayar

And I frankly don’t know today how to go to 
production without tests

62



@giltayar

But enough crap
Let’s see how we test our microservices

63



@giltayar

Unit Testing
● Test functions or modules that are mainly algorithmic, 

with little to no I/O.
○ We mostly don’t write classes

● Usually stateless functions
● No need for mocking

○ or the mock is so simple we don’t use a mocking library

● We don’t have a lot of these tests

64



@giltayar

Testing isBlankImage
const isBlankImage = require('../../src/is-blank-image')

describe('isBlankImage', function() {

it('should return true on a blank image', async () => {

const newImage = PNG.createImage({

filterType: 4,

})

const blankImage = await p(newImage.parse.bind(newImage))(

await p(fs.readFile)(path.join(__dirname, 'resources/blank-image.png')),

)

expect(await isBlankImage(blankImage)).to.be.true

})

65



@giltayar

Integration Tests
● Test the whole microservice (or large parts thereof)

○ Remember: Microservices are small, so no problem

● If we need a database or the like, we use docker with 
docker-compose.

● Lots of these tests

66



@giltayar

const app = require('../..')

function setupApp(app) {

let server

before(async () => {

await new Promise((resolve, reject) => {

server = app({maxNumberOfScreenshots: 50}).

listen(err => (err ? reject(err) : resolve()))

})

})

after(done => server.close(done))

return {

address: () => `localhost:${server.address().port}`,

}

67



@giltayar

68

describe('screenshot-webhook-app-testkit it', function() {

const {address} = setupApp(app)

it('screenshot count should be correct after accepting a screenshot', async () => {

const screenshotId = `id-${(Math.random() * 100000) | 0}`

const countBefore = await countScreenshots({address: address()})

const response = await fetch(`http://${address()}/accept/screenshotId`, {

method: 'POST',

body: Buffer.from('dummy!'),

})

expect(response.ok).to.be.true

expect(await countScreenshots({address: address()})).to.equal(countBefore + 1)

})



@giltayar

docker-compose.xml

services:

redis:

image: redis:alpine

ports:

- 6379

command:

- --requirepass

- apassword

69



@giltayar

E2E Tests
● Misnamed—doesn’t test all the microservices.

○ These are tests for one microservice
● They do a minimal test for the docker image, 

○ to see that it runs
○ and passes the environment variables correctly to the app.

● Looks just like the integration
○ The docker-compose.xml also includes a container for the 

microservice itself.

70



@giltayar

The Diamond Of Testing

Unit

Integration

E2E

71



@giltayar
72

How Do I Know I 
Wrote Enough 
Tests?

The Shakometer



@giltayar

● Special package
● Deploys all microservices to minikube
● And runs tests on all the system
● Deployment uses same deployment mechanism as 

for production and same configuration values
● We run it only sometimes

The E2E Package
73



@giltayar

74
Testing

Loosely-coupled

small packages
Monorepo

Uniform 

Packages

Frictionless Development



@giltayar

Loosely-Coupled
Small Packages

75



@giltayar

Why
● Each Microservice and library is easy to understand
● Which means that it is easy to test
● Which means that testing is possible
● Which is why we don’t need TypeScript

○ We’ve started exploring TypeScript JSDocs

76

Frictionless Development



@giltayar

CI/CD

77



@giltayar

Mini-CI: BTP

78



@giltayar

It just runs these steps...
❖ Increment version

❖ npm ci

❖ npm update

❖ npm run build

❖ npm test

❖ npm publish

79



@giltayar

CD: K8s Makes It So Easy
80

● And yet I’ve managed to complicate it
○ Prodigious use of over-design
○ Not to mention over-engineered
○ A simple set of yaml files, with some templating, would have 

sufficed

● YAGNI!
● KISS!



@giltayar

It’s all Kubernetes Template YAMLs (using Helm)
81



@giltayar

Which is customized per microservice
82



@giltayar

npm run deploy

83



@giltayar

In Summary

84



@giltayar

85
Testing

Loosely-coupled

small packages
Monorepo

Uniform 

Packages

Frictionless Development



@giltayar

I’ll Leave You With These Three Things:

86



@giltayar
87



@giltayar

Small is Beautiful

88



@giltayar

And above all: KISS



@giltayar

90
Testing

Loosely-coupled

small packages
Monorepo

Uniform 

Packages

Frictionless Development

Thank You!


