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About Me ● My developer experience goes all the way 
back to the ‘80s.

● Am, was, and always will be a developer
● Testing the code I write is my passion
● Currently evangelist and architect @ 

Applitools
● We deliver Visual Testing tools: 

If you’re serious about testing, checkout 
Applitools Eyes

● Sometimes my arms bend back
● But the gum I like is coming back in style

@giltayar
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Four Pillars and a Base
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I want to talk about… 

How we built the Visual Grid
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But first: why we built it the way we did
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Dynamic Languages vs Static Languages
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And It’s War!

Between 

● Java, C#, C++, Haskell, Kotlin and, yes, 
TypeScript

and

● Python, Ruby, Clojure, and, yes,
JavaScript
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Static Languages Lovers: Dynamic Languages are Scary!
● You can’t trust the code

○ because no type safety

● Difficult to comprehend
○ because no type documentation
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Dynamic Typing is not a weakness to overcome,
but a strength to take advantage of

But… 
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Safety Nets
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Dynamic Languages Force You To Be Better
❖ You can’t trust the code!

➢ Testing

❖ Difficult to comprehend!
➢ Loosely-coupled small packages
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Dynamic Languages Drive Two Pillars
16

Testing
Loosely-coupled

small packages
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The Other Two Pillars (which give structure to the first two)
17
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And these four pillars enable the base...
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Monorepo Pillar
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All Source Code is in One Git Repository
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Why? Why One Repo?
● Remember many small packages?
● Remember frictionless development?
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Demo: Creating a Package is Really Easy
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Packages are...
● Written separately
● Tested separately
● Published Separately
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Features spanning two packages
● Write, test, publish code in package B
● `npm update` in package A
● Write, test in package A

Or…

● Use `npm link`
● And then publish both packages
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NPM is our bridge between packages
● We will never EVER use

`require('.../package-a')`.

● semver-major supports changes that upstream packages cannot use
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Two-package development is not common
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VSCode
Workspaces
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Advantages of monorepos Disadvantages
Simple to move between one package and another

Simple to maintain many packages

Simple to split packages

Packages tend to be small (because easy to create)

“Common” packages are easy to develop and 
maintain

NPM link is bad

CI is a problem
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Uniform Packages
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All happy families are alike; 
each unhappy family is unhappy in its own way
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All happy families are alike; 
each unhappy family is unhappy in its own way

-- Tolstoy, “Anna Karenina”
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All happy packages are alike; 
each unhappy package is unhappy in its own way

-- Gil Tayar, “Applitools”
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All our packages are happy!
● They are uniform in the way we build, test, and publish them.

● They are the same in their folder structure
○ but that’s optional

40



@giltayar

Build Uniformity
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(in our monorepo)

A package is source code that can generate artifacts,
which are used by other packages or in production

What is a Package?
42
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Two Examples of Packages and their Artifacts
❖ Library package

➢ Artifact: an npm package in the repository

❖ Microservice package
➢ Artifact: a Docker image to be used in production
➢ Artifact: configuration values to be used in production
➢ Artifact: an npm package in the repository
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A package in our monorepo is an npm package
❖ npm install

➢ Bring in the dependent artifacts, and any artifact needed to build this one

❖ npm update

➢ Update dependencies to latest (without breaking backward compatibility)

❖ npm run build

➢ Build the artifact (optional for JavaScript)

❖ npm test

➢ Test the artifact to ensure that it can be published

❖ npm publish

➢ Publish the artifact(s)

❖ npm run deploy

➢ Deploy the artifact to production (only for microservices)

Note: we can use postpublish/postinstall to do more non-npm stuff.
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Example from a Library Package
"scripts": {

"build": "#", // Yay JavaScript!

"test": "npm run eslint && npm run test:mocha-parallel",

"test:mocha": "mocha 'test/unit/*.test.js'

'test/it/*.test.js' 'test/e2e/*.test.js'",

"test:mocha-parallel": "mocha-parallel-tests 'test/unit/*.test.js'

'test/it/*.test.js' 'test/e2e/*.test.js'",

"eslint": "eslint '**/*.js'"

},
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Example from a Microservice Package
"scripts": {

"build": "npm run build:docker",

"build:docker": "docker build -t applitools/chrome-rendering-worker

--build-arg NPM_FILE=`cat ~/.npmrc` .",

"test": "npm run eslint && npm run test:mocha",

"postpublish": "npm run publish:docker",

"publish:docker": "docker tag applitools/chrome-rendering-worker

applitools/chrome-rendering-worker:${npm_package_version} &&

docker push applitools/chrome-rendering-worker:${npm_package_version} 

&&

docker push applitools/chrome-rendering-worker:latest",

"deploy": "kdeploy deploy chrome-rendering-worker ${npm_package_version}"

}
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Advantages
DisadvantagesDevelopers can start developing (and 

deploying) all packages without 
understanding anything.

CI (when we have it) will be easier

Sometimes it’s like fitting a square into 
a circle.
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Source Code Uniformity
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Folder Structure
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Source Code Structure
51

src and scripts
● entrypoint has same name as 

package.
● All source is inside there.
● Whitelist the npm published files
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Source Code Structure
52

Microservice src and script
● src exports a web app
● scripts runs the web app. This is 

what the Dockerfile runs.
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Source Code Structure
53

Support files
● .vscode for easy debugging
● test folder each package
● Eslint and prettier
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Testing
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Rule #1:
Never EVER EVER run your code locally

(except in a test)
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… And You Don’t Have To Test
❖ Want to write your feature and immediately deploy it? 

➢ Sure!
➢

❖ Otherwise, write a test
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Testing is the epitome of
Frictionless Development
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Testing is the epitome of
Frictionless Development

59

a person or thing that is 

a perfect example of a 

particular quality or type



@giltayar

It is the main reason our velocity is high

60



@giltayar

It is one of the two reasons we don’t need
TypeScript
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And I frankly don’t know today how to go to 
production without tests
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But enough crap
Let’s see how we test our microservices
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Unit Testing
● Test functions or modules that are mainly algorithmic, 

with little to no I/O.
○ We mostly don’t write classes

● Usually stateless functions
● No need for mocking

○ or the mock is so simple we don’t use a mocking library

● We don’t have a lot of these tests
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Testing isBlankImage
const isBlankImage = require('../../src/is-blank-image')

describe('isBlankImage', function() {

it('should return true on a blank image', async () => {

const newImage = PNG.createImage({

filterType: 4,

})

const blankImage = await p(newImage.parse.bind(newImage))(

await p(fs.readFile)(path.join(__dirname, 'resources/blank-image.png')),

)

expect(await isBlankImage(blankImage)).to.be.true

})
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Integration Tests
● Test the whole microservice (or large parts thereof)

○ Remember: Microservices are small, so no problem

● If we need a database or the like, we use docker with 
docker-compose.

● Lots of these tests
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const app = require('../..')

function setupApp(app) {

let server

before(async () => {

await new Promise((resolve, reject) => {

server = app({maxNumberOfScreenshots: 50}).

listen(err => (err ? reject(err) : resolve()))

})

})

after(done => server.close(done))

return {

address: () => `localhost:${server.address().port}`,

}
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describe('screenshot-webhook-app-testkit it', function() {

const {address} = setupApp(app)

it('screenshot count should be correct after accepting a screenshot', async () => {

const screenshotId = `id-${(Math.random() * 100000) | 0}`

const countBefore = await countScreenshots({address: address()})

const response = await fetch(`http://${address()}/accept/screenshotId`, {

method: 'POST',

body: Buffer.from('dummy!'),

})

expect(response.ok).to.be.true

expect(await countScreenshots({address: address()})).to.equal(countBefore + 1)

})
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docker-compose.xml

services:

redis:

image: redis:alpine

ports:

- 6379

command:

- --requirepass

- apassword
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E2E Tests
● Misnamed—doesn’t test all the microservices.

○ These are tests for one microservice
● They do a minimal test for the docker image, 

○ to see that it runs
○ and passes the environment variables correctly to the app.

● Looks just like the integration
○ The docker-compose.xml also includes a container for the 

microservice itself.
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The Diamond Of Testing

Unit

Integration

E2E
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How Do I Know I 
Wrote Enough 
Tests?

The Shakometer
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● Special package
● Deploys all microservices to minikube
● And runs tests on all the system
● Deployment uses same deployment mechanism as 

for production and same configuration values
● We run it only sometimes

The E2E Package
73
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Loosely-Coupled
Small Packages
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Why
● Each Microservice and library is easy to understand
● Which means that it is easy to test
● Which means that testing is possible
● Which is why we don’t need TypeScript

○ We’ve started exploring TypeScript JSDocs

76
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CI/CD
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Mini-CI: BTP
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It just runs these steps...
❖ Increment version

❖ npm ci

❖ npm update

❖ npm run build

❖ npm test

❖ npm publish
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CD: K8s Makes It So Easy
80

● And yet I’ve managed to complicate it
○ Prodigious use of over-design
○ Not to mention over-engineered
○ A simple set of yaml files, with some templating, would have 

sufficed

● YAGNI!
● KISS!
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It’s all Kubernetes Template YAMLs (using Helm)
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Which is customized per microservice
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npm run deploy
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In Summary
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I’ll Leave You With These Three Things:
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Small is Beautiful
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And above all: KISS
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Thank You!


