DevSecOps: Practical tips for
defending web applications in the
age of agile/DevOps

zane@signhalsciences.com @

@zanelackey Signal Sciences

mailto:zane@etsy.com

Who you’ll be heckling today

Started out in offense
Pentester / researcher at ISEC Partners / NCC Group

Moved to defense
First CISO at Etsy, built and lead the security group

Spun out a product from our lessons learned

Co-founder / CSO at Signal Sciences, NGWAF +
RASP defending web applications/APIs/microservices

So what is this talk about anyway?

Lessons learned adapting AppSec/SDLC
from a Waterfall world to the DevOps/Cloud
world

Spoller: Security shifts from being a
gatekeeper to enabling teams to be secure
by default

What has changed?

The new realities in a DevSecOps world:

1. Changes happen multiple orders of magnitude faster
than previously

— Deployments go from a few a year to a few a week, month, or even
day

— Many injection points for security drops to few injections point

2. Decentralized ownership of deployment:

« The long and perilous journey of Dev->QA->Security->Dev-
>Sysops->Production becomes just Dev->Production

* As Dev/DevOps teams own their own ability to build and
deploy production infrastructure/apps, conversations with
security become opt-in rather than mandated
— A large culture shift is necessary around this

» Spoken previously on this:
http://www.slideshare.net/zanelackey/building-a-modern-
security-engineering-organization

http://www.slideshare.net/zanelackey/building-a-modern-security-engineering-organization

The new realities in a DevSecOps world:

Security can no longer be “outsourced” to the
security team, but rather that the security
team’s mission changes to providing the
resources for teams to be security self-
sufficient

Security only becomes successful if it can
bake in to the Development/DevOps process

How do legacy AppSec approaches
fare in a DevSecOps world?

An example of legacy AppSec approaches in a DevOps world

Select components of common SDLCs:

Developer Training
Threat modeling
Design Reviews
Static Analysis
Dynamic Scanning
Pentesting
—eedback

What pieces of the SDLC need to adapt the
most?

Which components we'll discuss today:

Developer Training
Threat Modeling
Design Reviews

Static Analysis
Dynamic Scanning
Pentesting

Security Visibility
Feedback
Continuous Feedback

Note: Just because we’re not discussing several of these
items in this talk doesn’t mean you stop doing them!

Static Analysis: It’s not a party until the 32847326t page of
the report!

Static Analysis (legacy):

Traditionally done as heavyweight process:
Run once a week/month resulting in a large output

Extensive configuration/tuning period, typically
lasting months+

Top down: search for everything, slowly refine to
eliminate false positives

Both of these issues were acceptable-ish in a
Waterfall world where you had plenty of time In
each release cycle

How do we adapt this control?

Static Analysis (modern):

Shift from from a top down model to a bottoms
up one.
|dentify specific classes of vulnerabilities you care about most,
and start with just those

Focus on eliminating false positives and enabling velocity with
the goal of only producing real issues that can be directly
consumed by a developer themselves

Once completed, add one or two more vulnerabilities classes
Repeat

This enables the velocity needed in DevOps of being
able to run static analysis on every code commit

Static Analysis (modern):

Example: Rather than trying to start with static analysis
for XSS, SQLI, Directory Traversal, Command
Execution, etc all at once, pick one:

Pro tip: Pick the easiest to implement first, (ex: Command

Execution)
Grep’ing for system() has a pretty low false positive rate...

The focus is not only on findings, but demonstrating to
the development org that this approach to static
analysis can bring them both value and velocity

Static Analysis (modern):

Identify use of certain primitives that should initiate a
conversation with the security team rather than just be
blocked:

Ex: Hashing, Encryption, File system operations, etc

Common example: Use of hashing or encryption
functions
Old approach: “MD5 is banned, use SHA256!”

New approach: “Hey, we saw you're making use of a hashing
function, can we chat on what you’re trying to protect?”

Silently allowing an approved hashing function to be used
doesn’t help anyone in cases where it's not the appropriate
use, ex: a case where the data should be encrypted not
hashed

Static Analysis (modern):

Build proactive alerting to know when sensitive and
rarely changed portions of the codebase have been
modified

Can be as simple as alerting on when the hash changes on
certain key files

Ex: authorization primitives, session management, encryption wrappers,
etc

By not blocking on these changes, you don’t impact
velocity but you ensure that the relevant
security/development engineers know if key platform
protections are being changed

o

o

-l .
. - / E . -
. \% v
o N/ \| - ”~ :
o I) » "/

Dynamic Scanning

Dynamic Scanning (legacy):

Used to meet a baseline standard of
discovering vulnerabillities:

Ex: “If a scanner can find it, we should probably fix
it”

Occasionally even (mis)used as a substitute
for pentesting

How do we adapt this control?

Dynamic Scanning (modern):

Applications architectures and functionality have
changed significantly since scanners were
pioneered in the early-mid 2000s

Modern applications are often far too complex to be
effectively covered by scanners

Client side functionality, single page applications, etc.

In the old use cases there’s too little bang for the
buck from scanners when used with modern apps

However, scanners can be adapted to two cheap
and effective use cases:

Dynamic Scanning (modern):

Ensuring that security policies are being enforced
Ex: TLS only supporting strong ciphers

Ex: Crawl the app and ensure that CSP exists, or that X-
Frame-Options header is always set to DENY

An extra control on ensuring previous
vulnerabilities aren’t accidentally regressed back
In to the application:

Ex: We had an XSS in this parameter before, always
check it with this specific payload to ensure the
protection didn’t get accidentally rolled back

yus s Honest Status Page X
BRR @honest_update

Our new monitoring product just watches
Twitter and IRC for our name + "down".

RETWEETS LIKES ! n H o a A? n > 3
N | - . A
146 245 v IV €5 :

12:42 PM - 22 Jul 2016

Security Visibility

Security Visibility (legacy):

Logs, customer service reports, outages

Each source of information was generally
Isolated in who had access to the data

Ex: Ops had logs, customer support dealt with
emails from customers, outages would page only
certain dev or ops on-call / leads, etc

How do we adapt this control?

Security Visibility (modern):

GOAL: Break down the previous silos of data
Isolation and empower security, development,
and DevOps teams to all know security
relevant information from their application in
real time

This isn’t a new idea! Take principles of
general operational visibility, and apply to a
security perspective

Superset of operational data + security relevant
data

HTTP 500 Errors »

This graph provokes wildly different assumptions from
Development, DevOps, and Security teams

HTTP 500 Errors > SQL Injection >

100

0 L 0 L1, I a
& AN Ak & AN AN

Context is key, for *all* groups

Feedback

Feedback (legacy):

Typically done as annual pentests

Unfortunately this really only answers the

question “do | have bugs?”
Spoller alert: The answer is yes. Always.

When applications were released annually or bi-
annually that could be “real time enough”
feedback

How do we adapt this control?

Feedback (modern):

Combination of bug bounty + pentests

Bounty Is not a replacement for pentest, it
augments pentest

Value is In the continuous nature of it, whereas
pentests can be more directed

Bounty gives general but more real time
feedback, pentest shifts to giving more
directed but less frequent feedback

Break out the Thought Leader-hosen!

It’s time for some thoughts on where modern application
defense should be headed towards

The hallmark of modern application defense
IS the combination of continuous feedback +
visibility

To be successful against real attackers, you
need to be able to answer the guestion:

“How do | know when my attackers are
being successful?”

Why DevOps can actually make you more
secure

Ability to detect attackers as early as possible
INn the attack chain
You want to know when the attacker discovers the

vulnerability, long before the database goes out
the door

Ability to continuously test and refine your
vulnerability triage/response

The beauty of DevOps Is that you can actually
move faster than your attackers for the first time,
especially the more you empower development /
DevOps teams

Why DevOps can actually make you more secure

ADbility to continuously test and refine your
Incident response/DFIR/SecOps process

By treating even benign bug reports as sample
Incidents, you can continuously exercise and
adapt your process

Ultimately you want to be able to answer several

guestions for any given bug report that comes In:

Did this bounty participant find any additional issues
they’re not reporting?

Was this reported vulnerability exploited previously?
etc

Continuous feedback loop success story:

“| discovered the vulnerability late Friday afternoon
and wasn't quite ready to emaill it to them ... [Etsy]
had detected my requests and pushed a patch
Saturday morning before | could email them.
This was by far the fastest response time by any
company l've reported to.”

- Source:

https://www.reddit.com/r/netsec/comments/vbrzg/etsy _has_been_one
of the best companies_ive

THE END/IS|NERR'}

Conclusions

he thesis of modern application security
IS about shifting:

From: A mindset of “Exclusively focus on
gatekeeping controls to eliminate bugs before
code is deployed”
(An impossible goal, bugs will never be fully
eliminated)
To: Focus on obtaining and refining
continuous visibility and feedback from
deployed applications, and providing security
capabillities that make developers/DevOps
teams security self-sufficient

WHO'S AWESOME?
«

e
4

_ YOU'REAWESOME

zane@signalsciences.com @zanelackey

mailto:zane@signalsciences.com

