
DevSecOps: Practical tips for

defending web applications in the

age of agile/DevOps

zane@signalsciences.com

@zanelackey

mailto:zane@etsy.com

Who you’ll be heckling today

• Started out in offense

– Pentester / researcher at iSEC Partners / NCC Group

• Moved to defense

– First CISO at Etsy, built and lead the security group

• Spun out a product from our lessons learned

– Co-founder / CSO at Signal Sciences, NGWAF +
RASP defending web applications/APIs/microservices

So what is this talk about anyway?

Lessons learned adapting AppSec/SDLC

from a Waterfall world to the DevOps/Cloud

world

Spoiler: Security shifts from being a

gatekeeper to enabling teams to be secure

by default

What has changed?

The new realities in a DevSecOps world:

1. Changes happen multiple orders of magnitude faster
than previously

– Deployments go from a few a year to a few a week, month, or even
day

– Many injection points for security drops to few injections point

2. Decentralized ownership of deployment:

• The long and perilous journey of Dev->QA->Security->Dev-
>Sysops->Production becomes just Dev->Production

• As Dev/DevOps teams own their own ability to build and
deploy production infrastructure/apps, conversations with
security become opt-in rather than mandated
– A large culture shift is necessary around this

» Spoken previously on this:
http://www.slideshare.net/zanelackey/building-a-modern-
security-engineering-organization

http://www.slideshare.net/zanelackey/building-a-modern-security-engineering-organization

The new realities in a DevSecOps world:

– Security can no longer be “outsourced” to the

security team, but rather that the security

team’s mission changes to providing the

resources for teams to be security self-

sufficient

– Security only becomes successful if it can

bake in to the Development/DevOps process

How do legacy AppSec approaches

fare in a DevSecOps world?

An example of legacy AppSec approaches in a DevOps world

Select components of common SDLCs:

– Developer Training

– Threat modeling

– Design Reviews

– Static Analysis

– Dynamic Scanning

– Pentesting

– Feedback

What pieces of the SDLC need to adapt the

most?

Which components we’ll discuss today:

– Developer Training

– Threat Modeling

– Design Reviews

– Static Analysis

– Dynamic Scanning

– Pentesting

– Security Visibility

– Feedback

– Continuous Feedback

• Note: Just because we’re not discussing several of these
items in this talk doesn’t mean you stop doing them!

Static Analysis: It’s not a party until the 32847326th page of
the report!

Static Analysis (legacy):

– Traditionally done as heavyweight process:

• Run once a week/month resulting in a large output

• Extensive configuration/tuning period, typically

lasting months+

• Top down: search for everything, slowly refine to

eliminate false positives

– Both of these issues were acceptable-ish in a

Waterfall world where you had plenty of time in

each release cycle

How do we adapt this control?

Static Analysis (modern):

– Shift from from a top down model to a bottoms

up one:
• Identify specific classes of vulnerabilities you care about most,

and start with just those

• Focus on eliminating false positives and enabling velocity with

the goal of only producing real issues that can be directly

consumed by a developer themselves

• Once completed, add one or two more vulnerabilities classes

• Repeat

– This enables the velocity needed in DevOps of being

able to run static analysis on every code commit

Static Analysis (modern):

– Example: Rather than trying to start with static analysis

for XSS, SQLi, Directory Traversal, Command

Execution, etc all at once, pick one:

• Pro tip: Pick the easiest to implement first, (ex: Command

Execution)

– Grep’ing for system() has a pretty low false positive rate…

– The focus is not only on findings, but demonstrating to

the development org that this approach to static

analysis can bring them both value and velocity

Static Analysis (modern):

– Identify use of certain primitives that should initiate a
conversation with the security team rather than just be
blocked:

• Ex: Hashing, Encryption, File system operations, etc

– Common example: Use of hashing or encryption
functions

• Old approach: “MD5 is banned, use SHA256!”

• New approach: “Hey, we saw you’re making use of a hashing
function, can we chat on what you’re trying to protect?”

• Silently allowing an approved hashing function to be used
doesn’t help anyone in cases where it’s not the appropriate
use, ex: a case where the data should be encrypted not
hashed

Static Analysis (modern):

– Build proactive alerting to know when sensitive and

rarely changed portions of the codebase have been

modified

• Can be as simple as alerting on when the hash changes on

certain key files

– Ex: authorization primitives, session management, encryption wrappers,

etc

– By not blocking on these changes, you don’t impact

velocity but you ensure that the relevant

security/development engineers know if key platform

protections are being changed

Dynamic Scanning

Dynamic Scanning (legacy):

– Used to meet a baseline standard of

discovering vulnerabilities:

• Ex: “If a scanner can find it, we should probably fix

it”

– Occasionally even (mis)used as a substitute

for pentesting

How do we adapt this control?

Dynamic Scanning (modern):

– Applications architectures and functionality have
changed significantly since scanners were
pioneered in the early-mid 2000s

• Modern applications are often far too complex to be
effectively covered by scanners
– Client side functionality, single page applications, etc.

– In the old use cases there’s too little bang for the
buck from scanners when used with modern apps

– However, scanners can be adapted to two cheap
and effective use cases:

Dynamic Scanning (modern):

1. Ensuring that security policies are being enforced

• Ex: TLS only supporting strong ciphers

• Ex: Crawl the app and ensure that CSP exists, or that X-

Frame-Options header is always set to DENY

2. An extra control on ensuring previous

vulnerabilities aren’t accidentally regressed back

in to the application:

• Ex: We had an XSS in this parameter before, always

check it with this specific payload to ensure the

protection didn’t get accidentally rolled back

Security Visibility

Security Visibility (legacy):

– Logs, customer service reports, outages

– Each source of information was generally

isolated in who had access to the data

• Ex: Ops had logs, customer support dealt with

emails from customers, outages would page only

certain dev or ops on-call / leads, etc

How do we adapt this control?

Security Visibility (modern):

– GOAL: Break down the previous silos of data
isolation and empower security, development,
and DevOps teams to all know security
relevant information from their application in
real time

– This isn’t a new idea! Take principles of
general operational visibility, and apply to a
security perspective

• Superset of operational data + security relevant
data

This graph provokes wildly different assumptions from
Development, DevOps, and Security teams

Context is key, for *all* groups

+

Feedback

Feedback (legacy):

• Typically done as annual pentests

• Unfortunately this really only answers the

question “do I have bugs?”
– Spoiler alert: The answer is yes. Always.

• When applications were released annually or bi-

annually that could be “real time enough”

feedback

How do we adapt this control?

Feedback (modern):

• Combination of bug bounty + pentests

• Bounty is not a replacement for pentest, it
augments pentest

– Value is in the continuous nature of it, whereas
pentests can be more directed

• Bounty gives general but more real time
feedback, pentest shifts to giving more
directed but less frequent feedback

Break out the Thought Leader-hosen!

It’s time for some thoughts on where modern application
defense should be headed towards

The hallmark of modern application defense

is the combination of continuous feedback +

visibility

To be successful against real attackers, you

need to be able to answer the question:

“How do I know when my attackers are

being successful?”

Why DevOps can actually make you more
secure

1. Ability to detect attackers as early as possible
in the attack chain

– You want to know when the attacker discovers the
vulnerability, long before the database goes out
the door

2. Ability to continuously test and refine your
vulnerability triage/response

– The beauty of DevOps is that you can actually
move faster than your attackers for the first time,
especially the more you empower development /
DevOps teams

Why DevOps can actually make you more secure

3. Ability to continuously test and refine your

incident response/DFIR/SecOps process

– By treating even benign bug reports as sample

incidents, you can continuously exercise and

adapt your process

– Ultimately you want to be able to answer several

questions for any given bug report that comes in:
– Did this bounty participant find any additional issues

they’re not reporting?

– Was this reported vulnerability exploited previously?

– etc

Continuous feedback loop success story:

“I discovered the vulnerability late Friday afternoon
and wasn't quite ready to email it to them … [Etsy]
had detected my requests and pushed a patch

Saturday morning before I could email them.
This was by far the fastest response time by any

company I've reported to.”

- Source:

https://www.reddit.com/r/netsec/comments/vbrzg/etsy_has_been_one_
of_the_best_companies_ive

Conclusions

• The thesis of modern application security

is about shifting:

– From: A mindset of “Exclusively focus on

gatekeeping controls to eliminate bugs before

code is deployed”

• (An impossible goal, bugs will never be fully

eliminated)

– To: Focus on obtaining and refining

continuous visibility and feedback from

deployed applications, and providing security

capabilities that make developers/DevOps

teams security self-sufficient

Thanks!

zane@signalsciences.com @zanelackey

mailto:zane@signalsciences.com

