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Main Product: Camunda BPM, an Open Source platform for workflow and decision automation 

that brings business users and software developers together.

Embed as a Java library or use as a standalone service through REST. 

Requires a traditional RDBMS.

Supports

- 7 database vendors

- 4 Java vendors

- 7 server runtimes

Bi-annual release of a new minor version

How Camunda’s CI differs from others
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CI@Camunda - Scale with the company

2010

CI 0.5
Employees: ~10

CI 1.0
Employees: ~20

2012

2015

CI 2.0
Employees: ~30

2017

CI 3.0
Employees: ~70

2019

CI 3.5
Employees: ~100
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CI 0.5 - Age of Bare-Metal

Single Hudson instance running on bare-metal in Camunda HQ

Everything was provisioned manually: Databases, CI Jobs

Problems:

- Reliability -> Jenkins UI became unresponsive when running lots of tests requiring CPU / 

Disk IO

- Scalability -> CI jobs piled up in queue

- Maintainability -> Major changes regarding configurations was painful, eg. common setting 

for all jobs changed
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Single Jenkins Master in DataCenter

- 8 static Jenkins Agent VMs

- ~1000 Jobs in total manually managed

consisting of:

- 4 Camunda Versions

- Community Projects

- Websites

- Operational Tooling

CI 1.0 - The Age of Virtual Machines
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- Maintainability

- Manually managed configuration -> CI Jobs, Databases and Servers

- Unable to test updates to Jenkins and its plugins

- Resource isolation and Scalability

- 1 instance per database

- 1 instance for enterprise-grade application servers like Weblogic and WebSphere

- Reproducibility

- Devs and QA could not easily recreate CI environment

Anecdote:

Use of an excel sheet to track port configurations of application servers and databases across CI jobs

CI 1.0 - Problems
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CI 2.0 - The Age of Containers

Rethinking CI in terms of:

- Maintainability and Reproducibility

- Infrastructure as Code -> Everything is in SCM and immutable

- Easy to support new environments

- Resource isolation

- Everything runs isolated in its own context

- Scalability and resource management

- Orchestration

- How to achieve maximum efficiency with limited resources and costs

- Split use cases in performance vs importance

- Run important services in DC, the rest on commodity hardware to keep costs low
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CI 2.0 - The Age of Containers

Solving the problem of scalability, resource management and allocation?

Welcome to Container orchestration!
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CI 2.0 - Reproducibility for Devs and QA
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CI 2.0 - Anecdotes - Microsoft SQL Server

Scaling Microsoft SQL Server

1. Create a QEMU image by using Chef cookbooks and Packer

2. Create a Docker image to bundle QEMU and the image.

3. Make sure to run it on bare-metal or 

on VMs with nested hardware virtualization cpu flag enabled.

4. Win!
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CI 2.0 - Lessons learned

Building Docker images:

- Evaluate downloading third party binaries vs installing by package manager

- Rebuilt base images + downstream images from time to time if you do not host an own 

package manager mirror to be aware of changes in upstream repositories

- Running more than one processes in a Docker container by eg. using something like 

supervisord is not so bad

- Having a unified interface to interact with Docker images is a big bonus, eg. by using a 

Makefile describing the tasks like build, run ...
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- Maintainability

- Compatibility: Jenkins Docker plugin vs Docker versions vs Operation system

- Requirements increased: More projects, more environments, more testing

- Scalability

- limited hardware capacity

- Buy vs Rent

- Resource allocation:

- Still a hard problem, especially with multiple Java processes in a CI context

- Java resource limits

CI 2.0 - Problems
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Want to get rid of  scalability restrictions by limited hardware? => Go Cloud!

More advanced Container orchestration than Docker Swarm? => Go Kubernetes!

Wanna reduce maintainability? => Use managed services, eg. GKE!

CI 3.0 - The Cloud Age
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Our philosophy for CI3

Everything should be 
configured as code

Maintenance and upgrades 
should be low-effort

No more snowflakes

Reusability across different 
projects is a must
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Jenkins - Kubernetes plugin

Moving from commodity machines to the Cloud

- No more limitations in term of resources
- Resources

- Possibility to have large servers for a fraction 
of the cost

- Scalability
- Few machines during the night
- Large cluster during the day

- Everything happens on-demand
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Jenkins - Configuration as Code Plugin

This plugin allows you to define your Jenkins configuration 
with YAML.

- We got rid of many custom groovy scripts
- Portability across different instances
- YAML is a better format than XML

- Compact
- Easier to read/edit

Disadvantages:

- Not everything is configurable using the CasC plugin
- Some groovy scripts are still needed

- Not all the plugins support it
- Still young, but very promising
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Jenkins - Configuration as Code Plugin

We use the base Jenkins image, no custom images:

- Plugins are downloaded (if necessary) by an init-container
- Jenkins is configured by the CasC plugin. The configuration is mounted using ConfigMaps
- Jenkins's jobs are configured using JobDSL

This makes our setup:

- Easy to replicate, even locally
- Portable and re-usable
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How does it work: Environments

Every supported environment has its own repository.

This repository contains:

- Dockerfile

- Configurations files

- Tests for docker image

Repository is shared across versions:

- Minimal configuration changes (most of the time)

- Forces us to rebuild old images and verify that they 

still work

- Reusable code
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How does it work: Jobs

Job DSL plugin is used to maintain all our Jobs:

- Job dependencies
- Pipelines structure
- Parameters
- Configuration

Over the year we built a Groovy project that we use 
to template our JobDSL files

- Makes extending job easier
- Applying the same change to multiple jobs is 

much easier
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What's the situation today?

Let me show you something...

21



Our build infrastructure in numbers

Currently, the Camunda CI has:

~ 2500 individual jobs (only for the Camunda BPM Platform project)

~ 22k builds in the past 30 days

- 19 Databases supported

- 8 Java versions

- 14 Application servers

But let's take a step back ...
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How does it work: Autonomy

Smaller Jenkins instances are managed by the teams:

- We provide a ready-to-use and updated instance

- They provide the jobs

Every project has a folder that Jenkins uses to bootstrap all 

the jobs.

- Code and CI are in the same repo

- Autonomy for small change
- Create new jobs, modify existing ones

- Right degree of trust
- Jenkins configuration is protected

- Credentials can't be accessed
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Conclusions

Where we are today is the result of years of work and failed experiments

- Migration to Kubernetes improved the quality (and the speed) of the service noticeably
- CasC plugin is the way-to-go for large deployments
- Find the right degree of control and autonomy for your company

Giving more autonomy to our developers allowed us to:

- Avoid interruptions for easy fixes and reduce wait time
- Developers are responsible about maintaining the pipeline

- Changes to the pipeline are testable in a branch, like code changes

Moving forward… Developer access to Kubernetes namespaces
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Questions?

Thank you for the attention

Andrea Giardini - @GiardiniAndrea - https://andreagiardini.com

Camunda Services Gmbh - @Camunda - https://camunda.com
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