
Jenkins Scaling and
Organization for an Efficient CI

Andrea Giardini
@GiardiniAndrea

Camunda Services Gmbh
camunda.com

DevOps Pro Europe - Vilnius - 27/03/2019

1

Main Product: Camunda BPM, an Open Source platform for workflow and decision automation

that brings business users and software developers together.

Embed as a Java library or use as a standalone service through REST.

Requires a traditional RDBMS.

Supports

- 7 database vendors

- 4 Java vendors

- 7 server runtimes

Bi-annual release of a new minor version

How Camunda’s CI differs from others

2

CI@Camunda - Scale with the company

2010

CI 0.5
Employees: ~10

CI 1.0
Employees: ~20

2012

2015

CI 2.0
Employees: ~30

2017

CI 3.0
Employees: ~70

2019

CI 3.5
Employees: ~100

3

CI 0.5 - Age of Bare-Metal

Single Hudson instance running on bare-metal in Camunda HQ

Everything was provisioned manually: Databases, CI Jobs

Problems:

- Reliability -> Jenkins UI became unresponsive when running lots of tests requiring CPU /

Disk IO

- Scalability -> CI jobs piled up in queue

- Maintainability -> Major changes regarding configurations was painful, eg. common setting

for all jobs changed

4

Single Jenkins Master in DataCenter

- 8 static Jenkins Agent VMs

- ~1000 Jobs in total manually managed

consisting of:

- 4 Camunda Versions

- Community Projects

- Websites

- Operational Tooling

CI 1.0 - The Age of Virtual Machines

5

- Maintainability

- Manually managed configuration -> CI Jobs, Databases and Servers

- Unable to test updates to Jenkins and its plugins

- Resource isolation and Scalability

- 1 instance per database

- 1 instance for enterprise-grade application servers like Weblogic and WebSphere

- Reproducibility

- Devs and QA could not easily recreate CI environment

Anecdote:

Use of an excel sheet to track port configurations of application servers and databases across CI jobs

CI 1.0 - Problems

6

CI 2.0 - The Age of Containers

Rethinking CI in terms of:

- Maintainability and Reproducibility

- Infrastructure as Code -> Everything is in SCM and immutable

- Easy to support new environments

- Resource isolation

- Everything runs isolated in its own context

- Scalability and resource management

- Orchestration

- How to achieve maximum efficiency with limited resources and costs

- Split use cases in performance vs importance

- Run important services in DC, the rest on commodity hardware to keep costs low

7

CI 2.0 - The Age of Containers

Solving the problem of scalability, resource management and allocation?

Welcome to Container orchestration!

8

CI 2.0 - Reproducibility for Devs and QA

9

CI 2.0 - Anecdotes - Microsoft SQL Server

Scaling Microsoft SQL Server

1. Create a QEMU image by using Chef cookbooks and Packer

2. Create a Docker image to bundle QEMU and the image.

3. Make sure to run it on bare-metal or

on VMs with nested hardware virtualization cpu flag enabled.

4. Win!

10

CI 2.0 - Lessons learned

Building Docker images:

- Evaluate downloading third party binaries vs installing by package manager

- Rebuilt base images + downstream images from time to time if you do not host an own

package manager mirror to be aware of changes in upstream repositories

- Running more than one processes in a Docker container by eg. using something like

supervisord is not so bad

- Having a unified interface to interact with Docker images is a big bonus, eg. by using a

Makefile describing the tasks like build, run ...

11

http://supervisord.org/

- Maintainability

- Compatibility: Jenkins Docker plugin vs Docker versions vs Operation system

- Requirements increased: More projects, more environments, more testing

- Scalability

- limited hardware capacity

- Buy vs Rent

- Resource allocation:

- Still a hard problem, especially with multiple Java processes in a CI context

- Java resource limits

CI 2.0 - Problems

13

Want to get rid of scalability restrictions by limited hardware? => Go Cloud!

More advanced Container orchestration than Docker Swarm? => Go Kubernetes!

Wanna reduce maintainability? => Use managed services, eg. GKE!

CI 3.0 - The Cloud Age

14

Our philosophy for CI3

Everything should be
configured as code

Maintenance and upgrades
should be low-effort

No more snowflakes

Reusability across different
projects is a must

15

Jenkins - Kubernetes plugin

Moving from commodity machines to the Cloud

- No more limitations in term of resources
- Resources

- Possibility to have large servers for a fraction
of the cost

- Scalability
- Few machines during the night
- Large cluster during the day

- Everything happens on-demand

16

Jenkins - Configuration as Code Plugin

This plugin allows you to define your Jenkins configuration
with YAML.

- We got rid of many custom groovy scripts
- Portability across different instances
- YAML is a better format than XML

- Compact
- Easier to read/edit

Disadvantages:

- Not everything is configurable using the CasC plugin
- Some groovy scripts are still needed

- Not all the plugins support it
- Still young, but very promising

17

Jenkins - Configuration as Code Plugin

We use the base Jenkins image, no custom images:

- Plugins are downloaded (if necessary) by an init-container
- Jenkins is configured by the CasC plugin. The configuration is mounted using ConfigMaps
- Jenkins's jobs are configured using JobDSL

This makes our setup:

- Easy to replicate, even locally
- Portable and re-usable

18

How does it work: Environments

Every supported environment has its own repository.

This repository contains:

- Dockerfile

- Configurations files

- Tests for docker image

Repository is shared across versions:

- Minimal configuration changes (most of the time)

- Forces us to rebuild old images and verify that they

still work

- Reusable code

19

How does it work: Jobs

Job DSL plugin is used to maintain all our Jobs:

- Job dependencies
- Pipelines structure
- Parameters
- Configuration

Over the year we built a Groovy project that we use
to template our JobDSL files

- Makes extending job easier
- Applying the same change to multiple jobs is

much easier

20

What's the situation today?

Let me show you something...

21

Our build infrastructure in numbers

Currently, the Camunda CI has:

~ 2500 individual jobs (only for the Camunda BPM Platform project)

~ 22k builds in the past 30 days

- 19 Databases supported

- 8 Java versions

- 14 Application servers

But let's take a step back ...

22

How does it work: Autonomy

Smaller Jenkins instances are managed by the teams:

- We provide a ready-to-use and updated instance

- They provide the jobs

Every project has a folder that Jenkins uses to bootstrap all

the jobs.

- Code and CI are in the same repo

- Autonomy for small change
- Create new jobs, modify existing ones

- Right degree of trust
- Jenkins configuration is protected

- Credentials can't be accessed

23

Conclusions

Where we are today is the result of years of work and failed experiments

- Migration to Kubernetes improved the quality (and the speed) of the service noticeably
- CasC plugin is the way-to-go for large deployments
- Find the right degree of control and autonomy for your company

Giving more autonomy to our developers allowed us to:

- Avoid interruptions for easy fixes and reduce wait time
- Developers are responsible about maintaining the pipeline

- Changes to the pipeline are testable in a branch, like code changes

Moving forward… Developer access to Kubernetes namespaces

24

Questions?

Thank you for the attention

Andrea Giardini - @GiardiniAndrea - https://andreagiardini.com

Camunda Services Gmbh - @Camunda - https://camunda.com
25

Slido.com - #devops2019

