

Cynefin and sense-making in the digital world

KAIMAR KARU

AGENDA

- 1) Transformations, implementations, and big-bang changes
- 2) The much-coveted Digital Transformation
- 3) Why is it all so difficult?
- 4) Complexity, sense-making, and decision-making
- 5) The Cynefin framework
- 6) Continuous incremental improvement

PRESENTER: KAIMAR KARU

IT Operations and Support

Software Development

Project Management

IT Service Management

Agile & DevOps

Teaching and Professional Training

Complexity science

Appreciating good beer

@kaimarkaru

CHANGE IS CONSTANT

BUSINESS CHANGE

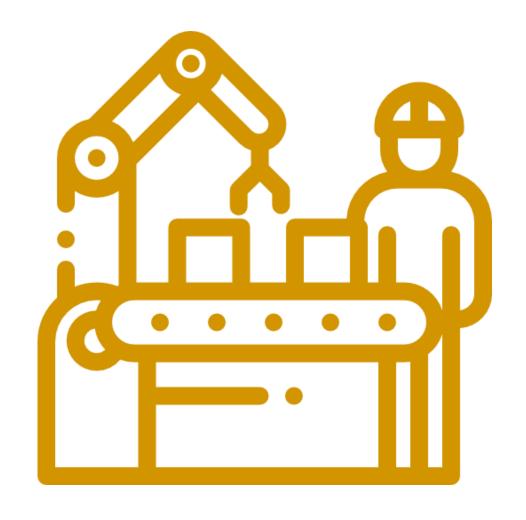
But often, the 'why' and 'how exactly' of change initiatives is unclear.


With the best explanation being "but everyone else …".

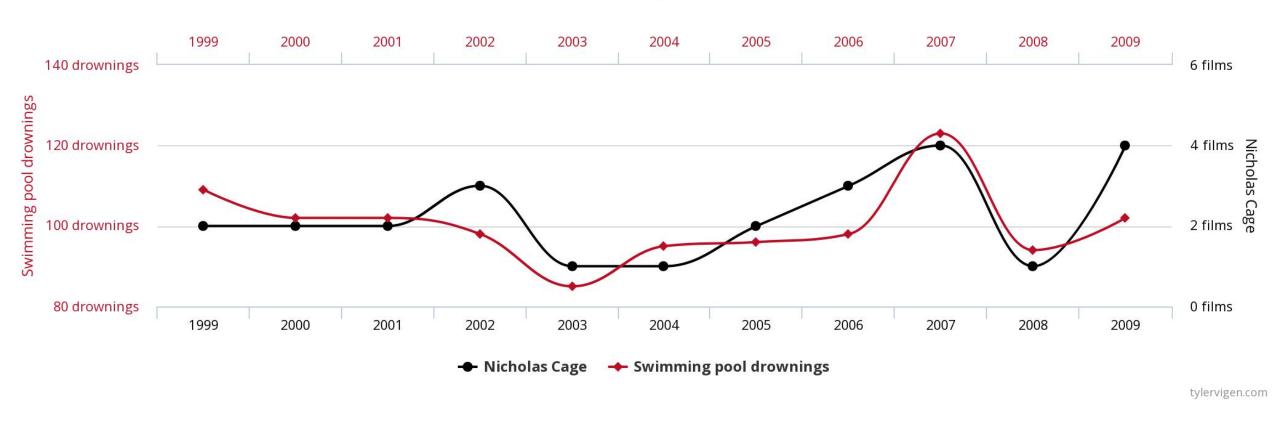
DIGITAL TRANSFORMATION

Figure out how to leverage technology to help the organization succeed.

And pay attention to the following:


- » Adopt a service mind-set
- » Focus on customer objectives to co-create customer value
- » Increase resilience to be able to learn from experiments
- » Reposition leaders as enablers, not order-givers
- » Challenge the status quo in the organization
- » Streamline processes, procedures, and the use of data

Apply methods and tools most suitable in the given context

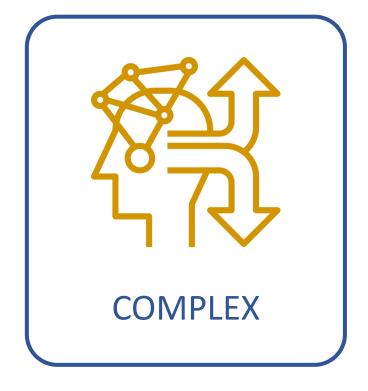

CHALLENGES

THE HAWTHORNE EFFECT

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

www.tylervigen.com/spurious-correlations



UNDERSTANDING THE CONTEXT

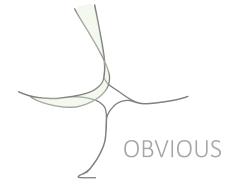
THREE TYPES OF SYSTEMS

"A system is a network governed by constraints that create coherence." *Cognitive Edge* A complex system is a system composed of interconnected parts that as a whole exhibit one or more properties not obvious from the properties of the individual parts.

CHARACTERISTICS OF COMPLEX SYSTEMS

- Patterns repeat by accident
- » The system is dispositional, not causal
- The system lightly constrains the agents
- » The agents modify the system with their interactions
- » Coherency appears in retrospect but not in advance
- » Actions will always have unintended consequences
- Engineering the future state is not possible
- » Hindsight does not lead to foresight

How can we make sense of the world so we can act in it?


David Snowden, 'Multi-ontology sense making; a new simplicity in decision making', 2005

CYNEFIN TO THE RESCUE

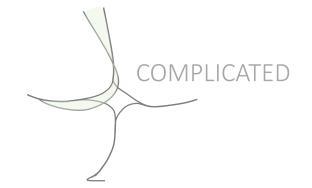
OBVIOUS DOMAIN

ONE RIGHT ANSWER EXISTS

COORDINATION

Best practice

Fixed constraints



Perceivable and predictable cause-and-effect relationships

Respond with a known solution

COMPLICATED DOMAIN

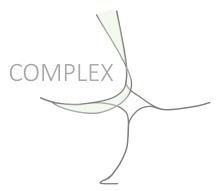
Good practice

COOPERATION

POTENTIALLY, MORE THAN ONE

RIGHT ANSWER TO CHOOSE FROM

Governing constraints



Cause-and-effect relationships knowable but not obvious

Respond with a chosen solution (plan)

COMPLEX DOMAIN

PROBE

SENSE

RESPOND

Exaptive practice

Make use of experimentation

Enabling constraints

Cause-and-effect relationships known only in retrospect

Respond with actions to move to the complicated domain

THERE ARE NO RIGHT ANSWERS BUT MULTIPLE HYPOTHESES CAN BE **CREATED**

COLLABORATION

CHAOTIC DOMAIN

Novel practice

Focus on stabilization

No effective constraints

Cause-and-effect relationships not perceivable

Respond with action to move to another domain

ACTING FAST IS MORE IMPORTANT
THAN LOOKING FOR THE RIGHT
ANSWER

COMPLIANCE

THE CYNEFIN FRAMEWORK

Enabling constraints

Exaptive practice

Multiple (conflicting) coherent hypotheses

Action required

Novel practice

No effective constraints

ACT-SENSE-RESPOND

CHAOTIC

COMPLICATED

SENSE-ANALYSE-RESPOND

Governing constraints

Good practice

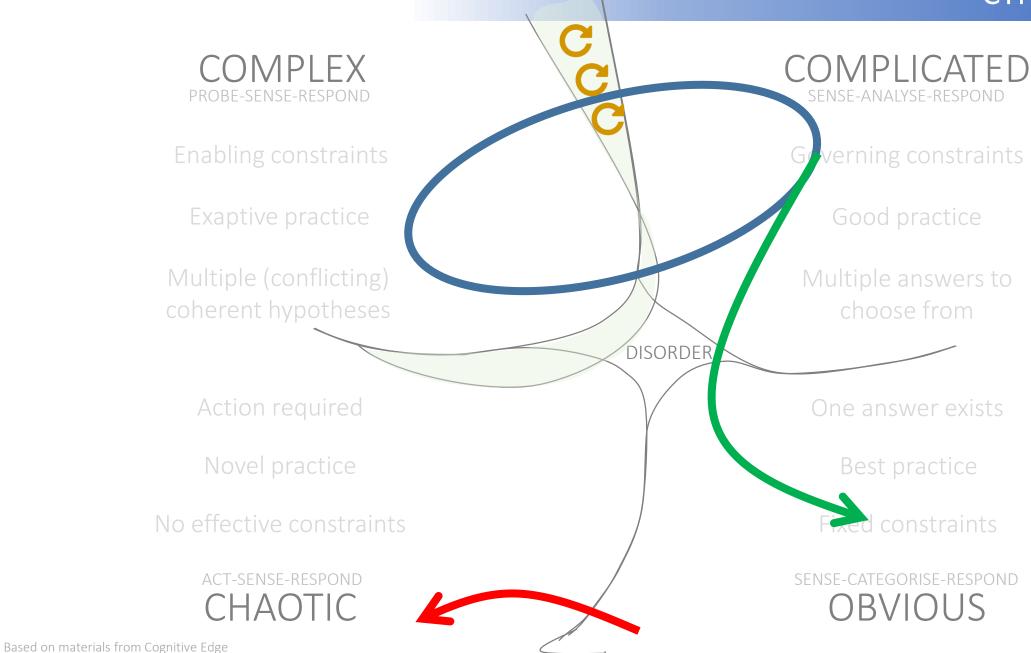
Multiple answers to choose from

One answer exists

DISORDER

Best practice

Fixed constraints


SENSE-CATEGORISE-RESPOND

OBVIOUS

Based on materials from Cognitive Edge

CYNEFIN DYNAMICS

EXAMPLES

(TO ILLUSTRATE, NOT TO CATEGORIZE OR DEFINE)

EXAMPLE: INCIDENT MANAGEMENT

COMPLICATED

» 2nd/3rd level support (SMEs) (short to medium resolution time)

DISORDER

» Major incident resolution

COMPLEX

Brainstorming and trialing

Swarming

CHAOTIC

- » 1st level support (playbooks)
- » Automated incident resolution

OBVIOUS

EXAMPLE: PROJECTS

COMPLEX

 Projects with high level of uncertainty, requiring experiments
 e.g. product R&D or innovation

» Projects in crisis or with unknown scope / business rationale

CHAOTIC

COMPLICATED

Projects with knowable risks,
 requiring specific expertise
 e.g. implementing an ERP solution

DISORDER

» Routine, low-risk projects with clear estimates

e.g. building a new simple web site

OBVIOUS

ÜBER-SIMPLIFIED HEURISTICS

COMPLEX

COMPLICATED

No-one can figure out what to do (and evidence supports conflicting hypotheses)

Someone can figure out what to do (and not all have to agree, choose an option)

DISORDER

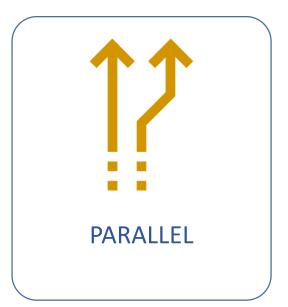
Someone must do something NOW (and stabilization is most important)

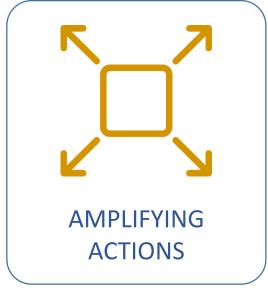
Someone knows what to do (and everybody agrees)

CHAOTIC

OBVIOUS

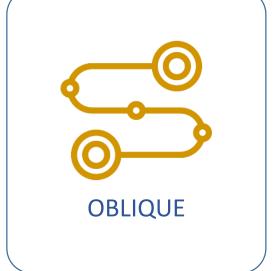
Based on materials from Cognitive Edge

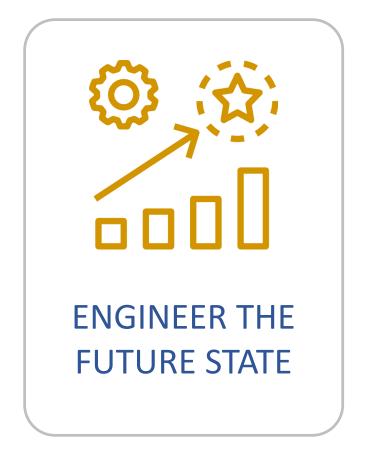



- » Avoid conflict by knowing where you are
- » Understand the (un)certainty levels
- » Avoid the illusions of causality and predictability
- » Differentiate between predictability and dispositionality
- » Avoid estimations becoming promises
- » Separate between 'knowable' and 'knowable in hindsight'
- » Choose the most suitable tools and methods

CONTINUOUS INCREMENTAL IMPROVEMENT

PORTFOLIO OF PROBES FOR COMPLEX SYSTEMS





Based on materials from Cognitive Edge

VS.

Look not for the shiny end goal, but for the adjacent possible.

Get in touch

@kaimarkaru

linkedin.com/in/kaimar

medium.com/@kaimarkaru